Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 24(11): 1830-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23990680

RESUMO

Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.


Assuntos
Proteínas com Homeodomínio LIM/fisiologia , Podócitos/citologia , Fatores de Transcrição/fisiologia , Actinas/fisiologia , Envelhecimento , Animais , Apoptose , Diferenciação Celular , Colágeno Tipo IV/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Homeodomínio LIM/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Síndrome da Unha-Patela/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Podócitos/química , Podócitos/ultraestrutura , Proteinúria/etiologia , Fatores de Transcrição/genética , Peixe-Zebra
2.
Histochem Cell Biol ; 132(2): 199-210, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19381676

RESUMO

Nephronophthisis belongs to a family of recessive cystic kidney diseases and may arise from mutations in multiple genes. In this report we have used a spontaneous mouse mutant of type 3 nephronophthisis to examine whether the doxycycline-inducible synthesis of Timp-2, a natural inhibitor of matrix metalloproteinases, can influence renal cyst growth in transgenic mice. Metalloproteinases may exert either a negative or a positive effect on the progression of cystic kidney disease, and we reasoned that this may be most effectively examined by using a natural inhibitor. Surprisingly, already the application of doxycycline, which also inhibits matrix metalloproteinases, accelerated renal cyst growth and led to increased renal fibrosis, an additional effect of Timp-2 was not detected. The positive effect of doxycycline on kidney size was not due to a non-specific "anabolic effect" but was specific for cystic kidneys because it was not observed in non-cystic kidneys. When looking for potential metabolic changes we noticed that the urine of control animals led to an increase in the calcium response of LLC-PK(1) cells, whereas the urine of doxycycline-treated mice showed the opposite effect and even antagonized the urine of control animals. Further experiments demonstrated that the urine of control animals contained a heat-labile, proteinase K-resistant substance which appears to be responsible for the induction of a calcium response in LLC-PK(1) cells. We conclude that doxycycline accelerates cyst growth possibly by the induction of a substance which lowers the intracellular calcium concentration. Our data also add a note of caution when interpreting phenotypes of animal models based upon the tet system.


Assuntos
Cistos/enzimologia , Rim/enzimologia , Rim/patologia , Doenças Renais Policísticas/enzimologia , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Animais , Cistos/induzido quimicamente , Cistos/genética , Modelos Animais de Doenças , Doxiciclina/farmacologia , Fibrose , Células HeLa , Humanos , Rim/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Renais Policísticas/induzido quimicamente , Doenças Renais Policísticas/genética , Receptores de Superfície Celular/genética , Inibidor Tecidual de Metaloproteinase-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...